FSUIPC for Advanced Users (for FSUIPC Version 2.975, March 2003)

General description of FSUIPC main functions

FSUIPC cannot and does not convert everything that may ever have been known in FS98 to work in the same way in FS2000, and it gets harder in FS2002. It does its best, and will improve as it is developed and as more is found out about FS2002. Many actions in FS98 that were simply triggered by writing into the global data area simply will not work that way on FS2000 or FS2002. For each specific action which may be needed and which doesn’t simply map to a location, FSUIPC has to trap the changes and call routines in different parts of FS to cause the action to occur. So far this works with throttles and many of the other analogue inputs, and with some other things, but by no means everything (yet).

That understood, FSUIPC provides the following additional facilities when used with FS2000/FS2002:

· Converts FS98 offsets, for data in the FS globals area, into appropriate offsets for the same data in FS2000. This applies to those that are known to have moved but which are still available and located successfully in FS2000, or even FS2002. Note that sometimes the changes vary even in FS2000: for example the N1% and N2% values for Jets are in the FS98 positions for transposed FS98 aircraft but swapped over for FS2000 native aircraft. FSUIPC deals with this particular difference (but not for FS2002).

· Obtains some information such as ambient wind details, jet EPR, Fuel Flow, and other engine related data which is not otherwise available in the FS2000/2002 globals at all, or available for some aircraft types and not others.

· Provides operating analogue inputs to FS2000/2002 from locations for throttles, propeller pitch, fuel mixture and many other aspects which otherwise don’t occur in FS2000/2002 because the data there is not acted upon when changed. Amongst the controls here are gear, brakes, spoilers, flaps and of course the primary flight controls.

· Constructs weather data structures for FS2000 and FS2002’s weather engines from FS98-style weather details placed into the old FS98 global weather positions. This allows programs such as Real Weather, FS_Meteo, Flight Director and SquawkBox to control the FS2000/FS2002 weather as they did in FS98, or better.

· Detects when FS2000 or FS2002 downloaded ‘real weather’ is in operation locally, and decodes this for application programs to use. If a weather control program wants to change the weather, FSUIPC automatically clears the local weather so that the external control can be implemented.

· Optionally patches the FS2000/2002 adventure interpreter so that the FS98 weather variables again contain relevant weather data (assuming the other weather features are also left enabled). See the section later, entitled “Weather Data for Adventures”.

· Provides additional joystick calibration and centring facilities and enables fully proportional analogue toe brakes. To be used.

None of these functions are performed by WideServer (part of the WideFS package). Because of the complications surrounding the operation of throttles, flight controls and other inputs, and of course the weather system, WideServer depends upon FSUIPC to perform ALL accesses to FS’s innards. It is therefore important, when both modules are used, to make sure they are compatible.

Options in the FSUIPC.INI file (for FS2000 and FS2002 primarily)

All of the interesting options can be controlled through the Settings window obtained by selecting the FS2000/2002 Modules menu, then FSUIPC (ALT, M, then F). This is the recommended way, and allows changes ‘on the fly’. Changes made in that dialogue are recorded in a file so that they are retained for the next re-load.

These options are all recorded in the [General] section of FSUIPC.INI, which is an editable text file initially created for you in the Modules folder. They are mostly weather processing options and also mostly only applicable to FS2000 and FS2002 (and possibly CFS2). Those marked (*) can be controlled (i.e. overridden) by external programs interfacing to FSUIPC, unless this is prevented by the ExternalOptionsControl parameter.

Only those parameters shown underlined are not adjustable within the Settings window.
General weather options

PatchWeatherToADV: This parameter controls the facility, specific to FS2000/2002 only, to patch the variable table in ADVDRV.DLL (the adventure interpreter) so that the weather variables report the same sort of values for the same sort of weather as did FS98. In FS2002 this option also controls the patching of autopilot values and control facilities, which would otherwise be missing. Only set this to “No” if you do not want such FS98 compatibility for your adventures. Note that successful patching is Logged (if logging is enabled at all), as is an unsuccessful attempt. The latter may occur if Microsoft releases any changes to ADVDRV.DLL.

AdjustWeatherATIS: This option applies to FS2002 only and is primarily intended for FSMeteo users. When enabled, and the user is running with ‘global’ weather (not downloaded or manually set local weather), FSUIPC intercepts weather requests from ATIS and ATC and substitutes ‘corrected’ values. For cloud bases it provides AGL values, and for clouds, pressure (QNH) and visibility, it provides destination values. These can all be set separately by programs such as FSMeteo. The AGL values provided depend on the surface temperature altitude value being correctly set. FSMeteo sets this to the METAR station altitude. If it isn’t being set, FSUIPC uses the current ground altitude, which may give odd results at times.

AutoClearWeather: FSUIPC will, by default, automatically operate the "Clear All Weather" function in FS2000/2002 if local weather is in force and:

(a) An FS98 weather control program changes the weather, or

(b) The "Force Weather" hot key is used (see next parameter), or

(c) The "Clear All" command is received on the Advanced Weather Interface.

If this automatic action is not required, set this parameter to “No”.

ForceWeatherKey: This allows you to assign a key press which, when used, will force-update the weather. When you use this keystroke it will re-form the FS2000/2002 weather from the last weather received from the external application. It will even remember the last weather received from the application after the latter is terminated. The second time it is used with no intervening Weather change it clears the weather completely, just as if FS2000’s “Clear All Weather” button had been pressed.

Note that if the “AutoClearWeather” option is disabled you may need to clear the weather manually in the FS2000/2002 dialogues before the hotkey will restore the external weather.

The keystroke is defined as in Flight Simulator’s own controls, and documented in my FS98 and FS2000 Controls documents (and listed below, in the Button Programming section). For example, I use (and recommend) "CTRL+SHIFT+W" which would be

ForceWeatherKey=87,11

The same control codes are used in FS2002.

SendWeatherInterval: In FS2002 (only), the weather provided by the built-in ATIS reports does not necessarily abide by the current weather prevailing. To get these reports updated, FSUIPC has to send weather change signals to other parts of FS2002. Unfortunately this results in an update of the ATIS identifier, which in real life only occurs at hourly intervals. So FSUIPC offers two options: this one, to set the minimum interval between weather updates for ATIS (in seconds), and the next one, to avoid sending any such updates unless the weather has changed noticeably.

The default interval is set for 60 seconds. You shouldn’t set it too short, but you may want to set it to a larger value. But be aware that this interval is imposed even if you transit to another METAR station area, but FSUIPC does recognise when you’ve loaded a new flight, so the interval is not imposed at this time.

To stop FSUIPC ever sending weather change signals, set this parameter to 0.

SendWeatherAlways: By default the ATIS weather is only sent when there are noticeable changes in the weather (the criteria are listed below). By setting this parameter to ‘Yes’ you can make FSUIPC send the updates at the specified intervals whether there’s been any change or not.

The criteria for deciding on weather changes are as follows. You should note that all these refer to surface weather, not necessarily the weather at the aircraft. Furthermore, if you are using FSMeteo and have set the destination weather, and FSMeteo has now supplied this for ATIS reports, it will be this weather which is used in the comparison even though FS’s own ATIS will be reacting to current weather, not the station weather.

· Surface temperature altitude changed* (this is used for METAR station elevation)

· Temperature changed by more than 3C

· Wind speed changed by more than 5 knots

· Wind direction changed by more than 5 degrees

· Cloud base changed by more than 500 feet

· Cloud cover (lowest layer) changed by more than 2 oktas

· Any change in precipitation from the lowest cloud layer*

· Visibility changed by more than 50% of lower value

· Barometric Pressure changed by more than 5 mb

*Note that the broadcast is performed immediately and without further checks when there’s any change in the METAR station altitude or in precipitation, no matter what these INI file parameters say. This is in an attempt to prevent the FS2002 problem whereby the cached weather retains everlasting rain even though “Clear All Weather” actions.

Winds

WindTransitions (*): If you enable this option FSUIPC will operate all FS2000/2002 winds other than those in ‘local weather’ mode (provided by the downloaded ‘real weather’ feature) in such a way that the transition across wind layers is reasonably smooth. It does this by setting only one wind layer into FS2000/2002—a very deep surface wind layer. The wind speed and direction is then programmed into this layer on a second-by-second basis according to the actual requested wind layer prescribed by the weather control program and the current plane altitude. At altitudes nearer to a layer boundary than 250 metres the actual speed and direction is computed proportionally.

Note that if 250 metres is more than 10% of the current layer’s thickness, then that 10% is used instead. This allows some amount of wind shear to be set if required by defining a very narrow upper wind layer.

WindSmoothness: This facility only operates when WindTransitions are enabled, but unlike WindTransitions, it also works for downloaded ‘local weather’. It allows the wind changes to be restricted to a maximum of so many knots and so many degrees per second—with the default set to 5 (knots or degrees), which seems to work quite well. It is designed to prevent sudden wind changes when the weather control program selects a new METAR station, or the user loads a new METAR report. The feature does not operate when the aircraft is on the ground (or being slewed in the air from a ground start). To switch the smoothing off, set this parameter to 0.

ExtendTopwind: This option extends the highest current wind layer to operate all the way up to 100000 feet. This is really intended as a stop-gap for downloaded real weather, which only supplies a thin surface wind layer and no upper winds.

MaxSurfaceWind: This allows the surface wind to be limited to a specified maximum wind speed, in knots. This facility is disabled if the value assigned here is 0. It applies to winds from any source.

WindDiscardLevel: This parameter sets a wind speed above which inputs from an external weather control program, using the FS98 interface (not the Advanced Weather Interface) are ignored. The default for this value is 400 knots. If a weather control program tries to set a wind speed above this, it is ignored and the previously set speed for this wind layer is retained. (This parameter is provided specifically to prevent problems occurring with programs using corrupted data from an Internet download or other problems). Set this parameter to 0 to disable this check altogether.

WindLimitLevel: This parameter sets a limit on the wind speed which can be accepted from an external weather control program, using the FS98 interface (not the Advanced Weather Interface). The default for this value is 200 knots. If a weather control program tries to set a wind speed above this (but below the “WindDiscardLevel” above), it is ignored and 200 knots is set instead. Set this parameter to 0 to disable this check altogether.

WindShearSharp: Set to ‘No’ to make FSUIPC set the Wind Shear to the default (minimum) setting. FSUIPC normally sets this to "Sharp" to avoid horrible spurious winds occurring during the transition, apparently an FS2000 bug (which may or may not be fixed in FS2002). [Note: if “WindTransitions=Yes” there are no wind layer transitions seen by FS2000/2002, so this parameter then does nothing].

UpperWindGusts (*): Set to ‘Yes’ to make FSUIPC copy the upper wind gust information provided by the weather control program. These are normally suppressed by FSUIPC because upper winds aren't gusty, and FS2000's gusts seem pretty wild anyway. Note: this parameter is not operational if SuppressAllgusts has been enabled.

SuppressAllGusts: Set this to ‘Yes’ if you feel that FS2000’s simulation of wind gusts is unrealistic, and cannot be corrected by the adjustments in FS2000.CFG suggested elsewhere. If this is set to “Yes” then the UpperWindGusts parameter is ineffective.

GustsRelative: Set to ‘No’ to set gust velocities as the maximum gust speed, which is what FS2000 should be using according to the way the Winds dialogue works. The default setting (Yes) makes FSUIPC set gust speeds to the difference between the upper gust speed and the normal wind speed. This is to get around an apparent bug in FS2000 where it seems to add gust speeds to the wind speed rather than treat them as a maximum. (See the hints in the main User Guide on getting FS2000 gusts working better). The parameter is not used on FS2002. The correct setting for FS2002 is actually No and this is assumed.

WindTurbulence: Set this to ‘Yes’ to make FSUIPC generate some random turbulence in all wind levels. This will range from none to extreme, but it will normally stay fairly mild. If this is set it overrides any other settings, from FS2000/2002 “real weather” or from an external weather program. It will vary over time as well.

SuppressWindTurbulence: Set this to ‘Yes’ to prevent any wind turbulence from any source. This is mainly intended to help maintain good frame rates in FS2002 even with dense A.I. traffic. There’s a similar option for cloud turbulence.

ToggleTaxiWindKey: This allows you to assign a keypress which, when used, will swap the current surface layer wind speed and gust setting with a wind speed of 1 knot and no gusts. Using the same hot key again will restore the original speed and gust setting. If it is used when the current wind is not related to the requested surface wind layer then nothing is changed (but a ‘beep’ may be heard as a warning). Note that this is inoperative if AutoTaxiWind is enabled

This feature can be useful to avoid the excessive weather-vaning whilst taxiing. It works with any type of weather applied to FS2000/2002, but only on the lowest wind layer. However, the AutoTaxiWind is probably more suitable for most uses.

The keystroke is defined as in Flight Simulator’s own controls, and documented in my FS98 and FS2000 Controls documents (and listed below, in the Button Programming section). For example, I use (and recommend) "CTRL+SHIFT+T" which would be

ToggleTaxiWindKey=84,11

The same control codes are used in FS2002.

AutoTaxiWind: This feature operates the 1 knot wind automatically, setting it to 1 knot when the plane is on the ground, and allowing the correct wind to transition in (according to the WindSmoothing setting above) after take-off. If this option is enabled the manual taxi wind on/off switching is disabled.

WindAjustAltitude: (Apologies for mis-spelling). Set to ‘Yes’ if FSUIPC should add the value specified in WindAjustAltitudeBy to all the wind layer boundaries specified by an external weather control program using the FS98 interface (not the Advanced Weather Interface, as used by FS_Meteo since version 4.77).

WindAjustAltitudeBy: See previous parameter. This is in feet and defaults to 2000.

WindSetVariance: When this option is enabled it makes FSUIPC convert any wind turbulence into wind “variance”. On FS2000 this is done for all wind layers, but in FS2002 it is only applied to upper layers. This feature seems to at least make FS do something (actually it introduces random variations in the wind direction), whilst the turbulence options seem ineffective.

WindVarFactor: This sets a value from 1 to 20 (default 7) which effectively controls the percentsge effect of wind turbulence on wind variance, when The WindSetVariance option is enabled. The default of 7 is rather less that the value I felt was realistic, which would be 10 (equating to 100%). In FS2002 the factor is doubled internally before being applied, as the effect seems rather feeble otherwise.

MagWindsToFST: If this is set ‘Yes’ then the wind data supplied to FSTraffic gives the wind direction in degrees Magnetic. Otherwise this is in degrees True, as it would be without FSUIPC running.

UpperWindsToFST: Set this to tell FSUIPC to send a fixed surface wind direction to FSTraffic when the aircraft is above a specified altitude. This is needed by some tracks for airways. As an example:

UpperWindsToFST=270,18000

Will cause all surface winds reported to FSTraffic to be from 270 degrees (Mag), once the aircraft is above 18000 feet.

SubterraneanWindFix: This is a facility in FS2002 only to ‘fix’ the odd winds up to 1000 feet AMSL which occur in the FS2002 downloaded “real weather”, even at METAR stations which are at altitudes over 1000 feet. It is defaulted on (‘Yes’), because these inaccessible surface winds otherwise cause several other FSUIPC facilities to go wrong—most noticeably the Taxi Wind option.

Visibility

MinimumVisibility: This parameter, which defaults to 0 (meaning it is inactive), is used to prevent any weather source setting a visibility below a specified minimum. The value is set in hundredths of a statute mile (i.e. 100 = 1 mile). Note that there may be a short delay (possibly a second) after a new low visibility has been applied before it is detected and corrected by FSUIPC.

MaximumVisibility: This parameter, which defaults to 2000 (20 miles), is used to prevent any weather source setting a surface visibility above a specified maximum when there is any cloud layer with more than 2/8ths cover. The value is set in hundredths of a statute mile (i.e. 100 = 1 mile). Note that there may be a short delay after a new high visibility has been applied before it is detected and corrected by FSUIPC. The parameter is only effective if the value is greater than the MinimumVisibility parameter.

MaximumVisibilityFewClouds: This is the same as the previous parameter, except that it gives the maximum to be used when there are no cloud layers of more than 2/8ths cover. It defaults to 6000 (60 miles) The idea is that the extended visibility gives bluer skies by day and more stars by night (but lower frame rates. Sorry, you can’t win every way <G>).

MaximumVisibilityOvercast: This is the same as the previous parameter, except that it gives the maximum to be used when there is at least one cloud layer of more than 6/8ths cover. It defaults to 2000 (20 miles).

MaximumVisibilityRainy: This is the same as the previous parameter, except that it gives the maximum to be used when there is any rain or snow. It defaults to 1000 (10 miles). If it is raining and cloudy the lower of the applicable limits is used.

LowerVisAltitude: When the visibility is set from an FS2000/2002 source, such as its downloaded ‘real weather’, or by the user setting it through the weather dialogues, there is already an upper altitude, above which global visibility values take over (unless influenced by FSUIPC’s graduated visibility facility, described below). However, for visibility controlled by external programs, via the FS98-compatible interface, there is no such altitude so one has to be inserted by FSUIPC. This is specified by LowerVisAltitude in feet, which defaults to 6000.

GraduatedVisibility (*): With this enabled FSUIPC provides a smooth change in visibility from the upper altitude of the surface level visibility to a specified upper visibility at another, specified, upper altitude. The two parameters, UpperVisibility and UpperVisAltitude, control this. The surface visibility extends up to the LowerVisAltitude (above) for visibility controlled by external programs using the FS98 interface, but is controlled by FS2000/2002 for its “real weather” or for visibilities set through the FS2000/2002 dialogues.
UpperVisibility: This parameter, which defaults to 6000 (60 statute miles), is used to prevent any weather source setting a visibility above a specified maximum. The value is set in hundredths of a statute mile (i.e. 100 = 1 mile). If GraduatedVisibility is enabled, it is used in conjunction with the next parameter.

UpperVisAltitude: This is only used when GraduatedVisibility is enabled, and sets the altitude by which the UpperVisibility should be attained. Above this altitude the visibility stays fixed at this value. The default UpperVisAltitude is 25000 feet.

ExtendMetarMaxVis (*): This checks the visibility being set and adjusts it in three specific circumstances, as follows:

1. If the FS98 program sets it to a value between 99.95 and 100.04 miles, it is reset to 6.20 miles. This is in order to rectify the results from any programs that take the 9999 metre maximum METAR visibility and transmit it literally as a number of 1/100ths of statute miles.

2. If the value is then in the range 6.15 to 6.24 miles (i.e. close to the 9999 metres maximum of a metric METAR), it is adjusted to a random value between 6.20 miles and the current maximum value (which will either be the MaximumVisibility parameter value, or 150 miles).

3. If the value is between 9.95 and 10.05 miles (i.e. close to the 10 statute mile maximum of a U.S. METAR), then it is adjusted to a random value from 10 miles to the current maximum (which will either be the MaximumVisibility parameter value, or 150 miles).

Note that the random addition is computed only once every five minutes, to avoid constant changes in visibility should the weather control program re-write the value from time to time.

SmoothVisibility and VisibilitySmoothness control the option to smooth visibility changes from external programs. The former parameter switches the option on or off (default “No”), and the second sets the number of seconds of FS elapsed time for each 10% change in the visibility range (default 2).

Clouds and Precipitation

GenerateRain (*): Set this option to ‘Yes’ to allow FSUIPC to provide semi-random rain/snow generation, assuming the external weather program is not controlling this. For rain or snow FSUIPC requires 3 or more oktas of cloud (1 okta if it is a thunder cloud) and a cloudbase at no more than 3000’ AGL.

RainStarter: controls the probability of rain or snow starting. This check occurs every minute or so. The default is 75 (out of 100). A value of 100 guarantees rain starting, providing the cloud is suitable as described above.

RainStopper: controls the probability of rain or snow stopping. This check occurs every minute or so. The default is 75 (out of 100). A value of 100 guarantees rain stopping.

GenerateCirrus (*): Set to ‘No’ to stop the occasional extra cirrus layer being added automatically by FSUIPC. Set to ‘Force’ to make FSUIPC add the occasional cirrus layer even if an external weather control program turns the option off.

CloudforJetTrails: Set to ‘Yes’ to make FSUIPC often add a 1/8th cover cumulus layer, high (but below the added cirrus). This is in order to allow Jet Trails to be produced by FSClouds 2000.

CloudForVSky: For FS2002 only, set to ‘Yes’ to generate a top layer of overcast cirrus, for FS Sky World SE’s “virtual sky. The minimum altitude is then given by MinVSkyAltitude in feet.

OneCloudLayer: This defaults to ‘No’. Set it to ‘Yes’ to prevent there ever being more than one layer of clouds. This may help get better performance on slower machines. It won’t help much on faster machines.

ThinClouds, ThinThunderClouds: These default to ‘No’. Set to ‘Yes’ to prevent any single cloud layer being thicker than 1000 (or 10000) feet (or whatever is set in the CloudThinness (or ThunderCloudThinness) parameter, below), from the nominal cloud base to its top (not including any variations which may be set). This may help get better performance on slower machines. It won’t help much on faster machines, but it could be used to get more realistic cloud thicknesses if weather programs generate them too thick.

Note that if the thunder cloud one is not enabled, the other applies to all cloud layers.

CloudThinness, ThunderCloudThinness allow the limits applied by the ThinClouds and ThinThunderClouds options to be changed. The defaults are 1000 and 10000 feet. The range accepted in both cases is 100–59999 (feet).

StormsAutomatic (*): Leave as ‘No’ to allow suitably programmed weather control programs to use all three FS98 cloud layers for any types of cloud. With this option set to ‘Yes’ the "thunderstorm" layer can only be used for storms, as it was in FS98.

StormProbability: A value from 0 to 100 representing a percentage probability of a storm. For a storm to be generated the winds and clouds must also be adequate—as defined in StormParameters below. This is checked every two minutes. The same probability is used to determine when a storm dissipates, after its minimum duration.

StormParameters: This should be used with care. The value provided is used to determine what conditions must prevail before a ‘random’ storm is even considered. It is used as follows:

StormParameters=WWCBBHD

All 7 characters are decimal,

WW
Minimum surface wind speed needed (in knots). Default is 10.

C
Minimum cloud cover (1–8, default 3).

BB
Maximum cloud base AGL, in thousands of feet (default 05, i.e. 5000 feet).

H
Minimum cloud thickness, in thousands of feet (default 3, i.e. 3000 feet).

D
Minimum duration of storm, in minutes, with 0 meaning 10 (default 0, i.e. 10 minutes)

Regardless of the value of D, the duration may be extended at random, with a probability then of it ending being the same as that of it starting. Of course if the cloud or wind conditions change the storm may end much earlier than the specified minimum.

The default parameter (applicable even if it not shown in the .ini file) is therefore:

StormParameters=1030530

StormMinTemp: This is an additional Storm Parameter, and sets the minimum surface air temperature at which the random storms will be allowed to occur. Default is 10 (Celsius), range –99 to 99.

CloudTurbulence: Set this to ‘Yes’ to make FSUIPC generate some random turbulence in all cloud layers. This will range from none to extreme, but it will normally stay fairly mild. If this is set it overrides any other settings, from FS2000 “real weather” or from an external weather program. It will vary over time as well.

SuppressCloudTurbulence: Set this to ‘Yes’ to prevent any cloud turbulence from any source. This is mainly intended to help maintain good frame rates in FS2002 even with dense A.I. traffic. There’s a similar option for wind turbulence.

CloudTurbulenceToWinds: This is for FS2000 global weather only, and is an alternative way of dealing with the frame rate hit with dense A.I. traffic. If the option is selected, cloud turbulence is removed and instead emulated by wind turbulence when flying in the cloud layer. This helps frame rates while outside the cloud layer, but not whilst within it.

CloudIcing: Set this to ‘Yes’ to make FSUIPC generate some random icing in clouds. This will range from none to extreme, but it will normally stay fairly mild. If this is set it overrides any other settings, from FS2000 “real weather” or from an external weather program. It will vary over time as well.

ApplyVisFix: By default FSUIPC will attempt to stop the “stuck low visibility” or white-out problem, apparently due to a bug in FS2000’s Weather.dll. It does this by checking the effective visibility once a second and trying to progressively correct it if it is lower than it should be when the aircraft is not inside a cloud layer. Note that the detection of cloud layers is not 100% reliably done at present (I’m working on it!), but at least the only bad symptom should be an occasional higher visibility than you’d expect. Note that it isn’t proven than this ‘fix’ works in 100% of cases where a whiteout may occur, but it certainly reduces their frequency by a large amount!

When Microsoft fix the bug causing the problem, simply disable this work-around by setting ApplyVisFix=No. Whether the bug still exists in FS2002 has not been determined at the time of writing.

FixRainProblem: This applies to FS2002 only, and by default it is set to ‘Yes’. It tells FSUIPC to take special steps to prevent the ‘everlasting rain’ problem occurring when using an external weather program, like FSMeteo. If MS does ever fix this FS2002-only bug then you can make FSUIPC a little more efficient by changing this option to ‘No’.

KeepFS98CloudCover: When the clouds are set through the FS98 IPC interface (as from SquawkBox, but not FSMeteo), FSUIPC adjects the cover requested for Cumulus type clouds to make them “look right”. It adds 2 to the Okta value for coverage below 5. Without this a cover requested as “scattered” (3/8) can look very sparse. If you want the okta coverage in FS to match the setting made by the external program, set this parameter to ‘Yes’. (Note that you should not attempt to use FSClouds vapour trails if you do this, otherwise they can appear at the wrong altitude).

Temperature

CopyDewPtToDayNightVar: When there are multiple temperature layers, the ATIS reports of FS2002 (and perhaps FS2000) get the Dew Point wrong: they report the Day/Night variation as the Dew Point. To get around this, FSUIPC normally copies the Dew Point to the Variation. The latter is not actually used in FS2000 or FS2002 in any case. If you want to stop this occurring, just set this parameter to ‘No’.

Other options

ExternalOptionControl: Set this to ‘No’ if you want to retain control over all the settings for FSUIPC. Normally some of the original options are available for an external weather control program to set according to its needs.

AdvDisplayHotKey: This allows you to assign a key press which, when used, will hide or (if there’s no other reason it is hidden) display the AdvDisplay window. For this to work you need to be using AdvDisplay version 2 or later.

The keystroke is defined as in Flight Simulator’s own controls, and documented in my FS98 and FS2000 Controls documents (and listed below, in the Button Programming section). For example, I use (and recommend) "CTRL+SHIFT+A" which would be

ForceWeatherKey=65,11

The same control codes are used in FS2002.

PatchSimApAlt: This option provides two ‘improvements’ to the FS2000 autopilot. First, it patches SIM1.SIM (the main aircraft simulating part of FS) to correct some inaccuracy in the autopilot’s altitude holding capability. The inaccuracy occurs when flying Flight Levels and increases with the difference between the altimeter setting (e.g. the standard pressure setting of 29.92” or 1013mb for Flight Levels) and the actual barometric pressure at sea level (QNH). This action is not applied to FS2002 as it seems to have been fixed in the new simulation engine.

Second, the same option corrects the vertical speed setting if it is set to climb when the aircraft would need to descend, or vice versa. It does this by inverting the sign of the vertical speed setting. It only does this when altitude acquire/hold is enabled, so that vertical speed control by itself is not affected. The correction is also not applied if the target altitude is set to a value over 65000 feet—a trick being used by some panels to provide V/S controlled ascents and descents.

If neither of these functions are required, set this parameter to ‘No’.

PlanLoadNoPosition: This option changes the behaviour of the FS2000/2002 facility to load flight plans into the GPS. If you set “PlanLoadNoPosition” to Yes, the FS2000 plan loader will not position the aircraft for you. Many folks prefer this as they like to start the flight with the aircraft parked on the ramp, and taxi to the correct runway themselves. This option is defaulted off (=No) to avoid confusing users already used to and happy with FS2000 working as it does now. Set it to “Yes” if you would prefer the facility not to move the aircraft.

MagicBattery: This reduces the discharge rate on the battery, keeping the voltage from dropping. If this is set ‘Yes’ or 0 then no drop is allowed. If set ‘No’ or 1 then the battery discharges normally. Any value from 2 to 999 acts as a divisor on the discharge rate, so 2 makes the battery last twice as long, and so on. This is designed to assist in getting over the apparent error in the airliners, which makes it discharge far too quickly before engine start.

ExtendedJoyCalib: This simply enabled the extra three Joystick calibration pages in the Settings and Options display. The actions carried out are not affected, only whether the settings are shown or not.

N1N2asFS98: Set this option (add the line if it isn’t there) to “yes” if (and only if) you want FS2000 to start up with an FS98 jet aircraft with Engines off. It makes FSUIPC assume that the N1% and N2% values are provided as they are in FS98 (i.e. reversed), rather than as they have been ‘corrected’ in FS2000 for FS2000 aircraft. FSUIPC does do this automatically, but it cannot differentiate the two cases until the engines are running.

This is not really of any use in FS2002, as FS98 aircraft transferred to FS2002 seem either not to work correctly in any case, or to be ‘converted’ to FS2002 standard via parameters generated in the Aircraft.cfg file.

AutoTuneADF: This controls an option to ‘auto-tune’ the ADF radio. If this is enabled, when FSUIPC detects no NDB signal being received it alternates the fractional part of the ADF frequency between .0 and .5 every seven seconds or so. This allows external cockpits built with only whole-number ADF radio facilities to be used in areas like the U.K. which have many NDB frequencies ending in .5.

AxisCalibration: This facility deals with inputs to the rudder, aileron and elevator axis offsets, via the FS98 offsets to the IPC interface. These values are subject to a range check, and always scaled down if this range is exceeded. The correct limits are –16383 to +16383.

Additionally, axis inputs can be scaled upwards to meet this extent, if required. To do this set:

AxisCalibration=Yes

By default with this option selected some flattening is applied to the values so that the response is not so vigorous near the centre (0). To calibrate the axes you must move all three controls to their maximum extends on each fresh load of FS2000.

Alternatively, you can set "AxisCalibration=Set". This operates as above, but adds a new section to the .ini file, thus:

[AxisCalibration]

Rudder=<max>,<slope>

Elevator=<max>,<slope>

Aileron=<max>,<slope>

The <max> values are those which are scaled to 16383, whilst the <slope> values control the amount of flattening in the centre: from 0 (no flattening) to 100 (maximum flattening. note that the flatter the centre, the steeper the sides, so it is always a compromise.

The default “slope” values are 50, 40, 40 respectively, for the three axes.

Once this calibration has been done and the section in the ini file produced (or added manually), there is no need to re-calibrate on each new FS reload. The "AxisCalibration" parameter resets automatically to "Yes".

Note that the "AxisCalibration=No" setting is equivalent to setting "Yes" and adding the section:

[AxisCalibration]

Rudder=16383,0

Elevator=16383,0

Aileron=16383,0

However, if these values are exceeded during an FS2000 session, the new maxima will replace any values in the ini file.

MainMenu=&Modules: This parameter controls which main (top-level) menu entry in Flight Simulator is used to access the FSUIPC Settings screen. The default, as shown here, is the Modules menu. Note the “&” character, which tells Windows which letter in the name is used for the keyboard accelerator (as in “Alt+M” here).

If you prefer to have FSUIPC accessed through, say, the Flights menu, then you can change this to &Flights. Note that the spelling and “&” characters must match whichever menu you are adding to, else a new one will be created instead. Foreign language versions of FS will have differences too, remember.

You can have FSUIPC Settings accessed directly from the top level menu if you like. To do this simply choose a unique menu name and add “…” to the end. FSUIPC will take this to mean that you want direct access. For example:

MainMenu=FS&UIPC …

Will create a top-level menu entry “FSUIPC …” which will lead directly to the Settings window. The accelerator here is U, because the F is already taken (for “Flights”)—the Settings window can then be obtained very quickly by just Alt+U.

SubMenu=&FSUIPC …: This supplies the name and the keyboard accelerator character (the one following the “&”) which will appear in the selected ‘Main Menu’ entry (see previous item) and which leads directly to the FSUIPC Settings window. If the Main Menu itself is made to lead directly to the Settings this entry is ignored.

FixWindows: set to ‘Yes’ prevents cockpit windows resizing and moving. This facility can also be used in FS98 but as there’s no in-program options for FS98 you must make sure the panel and scenery windows are exactly as you want them to be before setting this parameter.

SmoothPressure: set to ‘Yes’ to smooth barometric pressure changes by limiting the changes from external programs to 1 millibar ever so many seconds. The number of seconds is given by PressureSmoothness which defaults to 5 and can have any value from 1 to 30, inclusive.

SetStdBaroKey: This allows you to assign a keypress which, when used, will set the ‘Kollsman’ window on the Altimeter to the standard pressure, 29.92” or 1013.2mb. This is used when flying ‘flight Levels’.

The keystroke is defined as in Flight Simulator’s own controls, and documented in my FS98 and FS2000 Controls documents (and listed below, in the Button Programming section). For example, I use (and recommend) "CTRL+SHIFT+B" which would be

SetStdBaroKey=66,11

The same control codes are used in FS2002.

TCASid: FSUIPC supplies data on the FS2002 additional “Artificially Intelligent” (A.I.) aircraft flying in the neighbourhood, for external TCAS or mapping programs to display. Normally the aircraft is identified by its Airline and Flight number, if there is one, otherwise by the Tail number.

However, other types of identification string can be chosen instead. In particular, the optional labels placed on the aircraft by FS in the scenery view only shows tail numbers, so if you want to match them up you’d want to set this parameter to “Tail”. The full list of options here is:

Flight
for airline+flight, or tail number, as available (default)

Tail
for tail numbers only

Type
for the “ATC type”, generally only the Make

Title
from the aircraft title (in the .CFG file), truncated to 17 characters

Type+
for the type as above, truncated if necessary, plus the last 3 characters of the tail number

The utility “TrafficLook” is supplied—you can see the difference in its display.

TCASrange: Sets the maximum range at which FS2002 A.I. aircraft will be added to the tables for external TCAS applications. This defaults to 40 nm. A value of 0 turns off the limit altogether. This parameter can be adjusted in the Technical page of the FSUIPC Options whilst FS2002 is running.

TrafficScanPerFrame: Sets the rate at which FSUIPC scans the AI traffic data for changes. This is a percentage (0–100) per flight simulator frame. The default is 10, which means it will take 10 frames to update all aircraft. You can try higher values if you want to see more fluidity in AI traffic movement, assuming the application itself can scan fast enough. The only penalty from higher values may be a performance hit on Flight Sim, or your application, but many modern PCs may allow even 100% updates per FS frame without measurable degradation. If you set this to 0 you will get no AI aircraft at all, though this will not stop externally injected data (e.g. from AIBridge).

SetSimSpeedX1: optionally sets a Hot Key which when used resets the simulation rate to x1 (i.e. normal). The keystroke is defined as in Flight Simulator’s own controls, and documented in my FS98 and FS2000 Controls documents (and listed below, in the Button Programming section). The same control codes are used in FS2002. As an example, for "CTRL+SHIFT+S" this would be

SetSimSpeedX1=83,11

ThrottleSyncToggle: sets a Hot Key which operates a facility to make all throttle inputs, for any engine, affect the throttle inputs to all engines. It’s a toggle function—if it is on then using it again turns it off. If you are only using a single throttle then this won’t make a lot of difference except that every time you use toggle it FSUIPC will make the throttle selection (i.e. the keypress E+1 … etc) apply to all engines. The keystroke is defined as in Flight Simulator’s own controls, and documented in my FS98 and FS2000 Controls documents (and listed below, in the Button Programming section). The same control codes are used in FS2002. As an example, for "CTRL+SHIFT+E" this would be

ThrottleSyncToggle=69,11

FixControlAccel: This, if enabled intercepts all controls, and changes the elapsed time location inside FS before forwarding every different control, so that the time elapsed looks large enough for the control not to be accelerated. If it sees successive identical controls then it leaves them, so they can be accelerated as normal. [This should not be used by keyboard flyers!]

For a fuller explanation, please see the User Guide.

TrapUserInterrupt: Another option for FS2002 only, defaulted on, this is provided to trap certain “User Interrupt” occurrences, which cause the “End Flight?” dialogue to appear on screen whilst flying. Apparently these can occur in certain configurations if the aircraft is over-stressed or has some minor damage inflicted by, for example, taxiing over rough ground.

NavFreq50KHz: It seems that, in FS2002 for the first time, the NAV radios are tunable to 25KHz frequencies, like the COM radios. Thus the increment/decrement is 25KHz instead of 50KHz. This can cause some difficulty with cockpit designs suited to the current actual 50KHz spacing, so FSUIPC provides this option to force NAV radio frequencies to abide by 50KHz spacing (.00 .05 .10 .15 … .95).

AileronSpikeRemoval

ElevatorSpikeRemoval

RudderSpikeRemoval: These control the options to ignore any aileron/elevator/rudder signals specifying maximum possible deflection. It is mainly useful in conjunction with Wilco’s 767PIC on FS2002, which seems to cause these spurious ‘spikes’ on the elevator occasionally, and on the rudder when flown with the yaw damper switched off.

ClockSync: This facility, applicable only to FS2002, and kindly donated by José Oliveira, compensates for the odd phenomenon of FS2002 losing time. It synchronises the seconds values with that of your PCs system clock. It is defaulted off (=No).

SmoothIAS: This option acts only on the Indicated Air Speed offered to external programs through the IPC interface—in other words, the DWORD at offset 0x0580. It smooths the value by automatically providing a moving average of 23 samples taken at roughly 55 mSec intervals. This appears to overcome the ratcheting effect which can be seen on steep climbs and descents.

Logging facilities (FS98, FS2000 and FS2002)
These options work with FS98, FS2000 and FS2002. On FS2000 and FS2002 they can be controlled ‘on the fly’ from the FSUIPC dialogue window (select the Modules menu them FSUIPC, ALT, M then F). With any logging option enabled FSUIPC produces a text file called FSUIPC.LOG in the Modules folder. Entries in the log are timed, from the start of the FS session. The time is in milliseconds and appears on the extreme left of each line.

Please use the logging facilities to check things before reporting problems or omissions in FSUIPC, and supply an appropriate log file (or extract) properly zipped up with such reports.

Note that log files can get very large if all the options are turned on. Keep test flights short. You can read log files whilst flying provided you use a reader which shares access (like recent Notepad programs), or use the ‘NewLogKey’ described below to close logs and start new ones.

All Log control parameters go into the [General] section of FSUIPC.INI. None are included by default.

LogWeather=Yes: Logs weather data. This will log incoming data, set by a weather control program, on FS98 as well as FS2000 and FS2002. On FS2000/2002 you will also get the actual weather data constructed by FSUIPC in FS2000/2002 terms. Then you get the weather read out by FSUIPC and lastly placed back into the globals for applications to read. Incoming weather control data on the Advanced Weather interface for FS2000/2002 is also logged in full.

LogWrites=Yes: Logs the global ‘writes’ received from applications, with global offset address and data size, plus all bytes of data. The offsets shown are the ones used by the application. [Take care: the Log file may get very large!]

LogReads=Yes: Logs the global ‘reads’ received from applications, with global offset address and data size, plus all bytes of data. The offsets shown are the ones used by the application. [Take care: the Log file may get very large!]

LogExtras=Yes: This logs additional technical data about the inner workings of FSUIPC, the nature of which will vary from time to time according to needs. There is nothing here that would be of interest to the user, but when investigating problems users may be asked to enable it so that the logs returned can be more meaningful in solving them. Do not fly extensively with this option enabled or you will fill up your disk and probably compromise the simulator’s performance!

Additional “Extras” logging facilities are available if the parameter Debug=Please is incorporated into the INI file. This changes the Extras logging flag into a numeric value that ranges from 0 (off) to 4095. In this range the ‘1’ bit (i.e. any odd number) provides the normal Extras logging, and all others are used for specific debugging or performance measuring log entries which will vary from time to time. This facility is for use under instruction only.

NewLogKey, StopLogKey: These allow you to assign keypresses to close the current Log file (if logging was enabled), and (in the case of ‘NewLogKey’) start a new one. The ‘NewLogKey’ will start a new log even if one wasn’t enabled by default, so between them these two keys give complete control over the logging. (Note that in FS2000 both actions are also available in the FSUIPC dialogue window).

The current log file is always called FSUIPC.LOG. The others are named in numerical order FSUIPC.1.LOG, … 2.LOG, … etc.

If ‘NewLogKey is used when logging was not originally enabled (i.e. none of the Log options above were selected), this key will not only start logging, but will also assume the ‘LogWeather=Yes’ option (but none of the others).

The keystrokes are defined as in Flight Simulator’s own controls, and documented in my FS98 and FS2000 Controls documents (and listed below, in the Button Programming section). For example, I use “Shft+Ctrl+L” and “Shft+Ctrl+O” (for “Log” and “Off” respectively) which would be

NewLogKey=76,11

StopLogKey=79,11

The same control codes are used in FS2002.

You don’t need to define both keys, but note that if you stop the logging but have no “NewLogKey” defined you can only restart logging by terminating and reloading Flight Simulator (except with FS2000/2002, where you can use the button in the FSUIPC dialogue window).

Button Programming

FSUIPC’s options dialogue provides a page for programming button in all the main ways. Here we look at how this programming is encoded in the FSUIPC.INI file, and how the programming can be extended to provide multiple keystrokes and controls for a button, mixed if required, and to provide compound (conditional) actions—ones depending on other buttons, switch settings and even previous keyboard presses.

Before embarking on the programming itself, one global parameter needs to be described:

PollInterval=55

This optional parameter for the [Buttons] section tells FSUIPC how often to read (“poll”) the joystick buttons. The time is in milliseconds, and the default, as shown , is 55 (about 18 times a second). This unit is called a “tick”.

A polling rate of 18 per second is perfectly adequate for all normal button programming. It is only when you come to the more advanced uses that you may want to change this. Rotary switches, for instance, may give pulses so fast that some are missed at such a rate.

Any value from 1 millisecond upwards can be specified, but those from 40 upwards result in a specific number of “ticks” being used. i.e. 40-82 actually result in 55 (1 tick), 83-138 in 2 ticks, and so on. Ticks are also approximate, in that they depend on the other activities and loading upon FS.

Values 1–40 milliseconds are actually handled by a separate thread in FSUIPC and give more accurate results, but polling the joysticks too frequently may damage FS’s performance, and may even make its response to joystick controls more precarious. No truly adverse effects have been noticed during testing, but it is as well to be warned. If you think you need faster button polling, try values like 30, 20, 10 and make sure that FS is still performing well each time.

Note that PFC’s “emulated” joysticks (those with numbers 16 upwards) are polled four times more frequently in any case—this is done because there is no overhead in doing so, there are no calls to Windows but merely some data inspections.

FORMAT OF BUTTON DEFINITIONS

The button programming is saved in a section in the INI file called [Buttons]. Up to 512 separate entries defining button actions can be included in this section, normally numbered sequentially from 0.

The basic format of each entry in the Buttons section is as follows:

For keypresses:

<Entry number> = <Action><Joy#>,<Btn#>,K<key>,<shifts>

and for controls:

<Entry number> = <Action><Joy#>,<Btn#>,C<control>,<parameter>

This is more complex for conditional actions, so they will be described later.

The <Entry number> is not material, it is just a sequence number from 0–511. Each entry must have a unique entry number, and the actual order is only important when multiple actions are defined for the same button. FSUIPC will always ensure that the numbers here run from 0 without gaps, even if you edit them otherwise, but it will always retain the correct same order for sequences on one button. Just don’t rely on this number to identify anything yourself.

<Action> is a single letter denoting the action being defined:

P
Pulse the key press or control: i.e. do not hold the keys down whilst the button is held down. This is always the case for controls, and should always be the case for any key presses involving ALT key usage, because once the FS Menu is entered FSUIPC cannot supply further changes like key releases.

H
Hold the specified keys down until the button is released. (This doesn’t apply to Controls and will be treated like P in their case). Do not use this with key presses involving ALT, for the reason just given.

R
Repeat the key press or control whilst the button is kept held down. The repeat rate is approximately 6 per second and is not adjustable. Do not use this with key presses involving ALT, for the reason already given.

U
Pulse the key press of control when the button is released.

Any button can have a U entry as well as a P, H, or R entry. Provided the button only has one P, H or R, and/or one U entry, and that when it does have two they are either both key presses or both controls, then the button programming can be handled entirely in FSUIPC’s Buttons option page.

The <Joy#> identifies the joystick number (0–15 for normal joysticks, 16 upwards for PFC or other future ‘emulated’ joysticks) as displayed by FSUIPC, and the <Btn#> identifies the specific button (0–39), again as in FSUIPC’s display. Of these buttons 0–31 are regular buttons and 32–39 are the 8 possible POV view angles, starting forward and going clockwise every 45 degrees. (There are no emulated POVs so for joysticks 16 and upwards the buttons numbers are always in the 0–31 range).

For key presses, the <key> value following the letter ‘K’ is the virtual key code for the key to be pressed. Here’s a list for convenience (but note that not all of these will be usable):

8
Backspace

12
NumPad 5 (NumLock OFF)

13
Enter

19
Pause

32
Space bar

33
Page Up

34
Page Down

35
End

36
Home

37
Left arrow

38
Up arrow

39
Right arrow

40
Down arrow

45
Insert

46
Delete

48
0 on main keyboard

49
1 on main keyboard

50
2 on main keyboard

51
3 on main keyboard

52
4 on main keyboard

53
5 on main keyboard

54
6 on main keyboard

55
7 on main keyboard

56
8 on main keyboard

57
9 on main keyboard

65
A

66
B

67
C

68
D

69
E

70
F

71
G

72
H

73
I

74
J

75
K

76
L

77
M

78
N

79
O

80
P

81
Q

82
R

83
S

84
T

85
U

86
V

87
W

88
X

89
Y

90
Z

96
NumPad 0 (NumLock ON)

97
NumPad 1 (NumLock ON)

98
NumPad 2 (NumLock ON)

99
NumPad 3 (NumLock ON)

100
NumPad 4 (NumLock ON)

101
NumPad 5 (NumLock ON)

102
NumPad 6 (NumLock ON)

103
NumPad 7 (NumLock ON)

104
NumPad 8 (NumLock ON)

105
NumPad 9 (NumLock ON)

106
NumPad *

107
NumPad +

109
NumPad -

110
NumPad .

111
NumPad /

112
F1

113
F2

114
F3

115
F4

116
F5

117
F6

118
F7

119
F8

120
F9

121
F10

122
F11

123
F12

135
NumPad Enter

144
NumLock

145
ScrollLock

186
; : Key*

187
= + Key*

188
, < Key*

189
- _ Key*

190
. > Key*

191
/ ? Key*

192
~ Key*

219
[{ Key*

220
\ | Key*

221
] } Key*

222
' @ Key*

223
` ¬ ¦ Key*

* These keys will vary from keyboard to keyboard. The graphics indicated are those shown on my UK keyboard. It is possible that keys in the same relative position on the keyboard will respond similarly, so here is a positional description for those of you without UK keyboards. This list is in left-to-right, top down order, scanning the keyboard:

223
` ¬ ¦
is top left, just left of the main keyboard 1 key

189
- _
is also in the top row, just to the right of the 0 key

187
= +
is to the right of 189

219
[{
is in the 2nd row down, to the right of the alpha keys.

221
]}
is to the right of 219

186
; :
is in the 3rd row down, to the right of the alpha keys.

222
' @
is to the right of 186

192
~
is to the right of 222 (tucked in with the Enter key)

220
\ |
is in the 4th row down, to the left of all the alpha keys

188
, <
is also in the 4th row down, to the right of the alpha keys

190
. >
is to the right of 188

191
/ ?
is to the right of 190

The <shifts> value is a combination (add them) of the following values, as needed:

1
Shift

2
Control

4
Tab

8
Normal (add this in anyway)

16
Alt (take care with this one—it invokes the Menu)

If only “normal” is needed, the whole parameter and the preceding comma can be omitted. Usual values are:

9 for shift+ …

10 for control+ …

11 for shift+control+ …

For FS controls the <control> is a number from 65536 upwards, denoting the specific FS control number. Lists of these can be found in my various FS controls documents. In the FSUIPC Buttons page the controls are shown by name normally, but if you want to try a control which has no name but might do something useful for you, enter it here, in the INI file. In the Buttons page FSUIPC will show this by number instead of name.

The <parameter> for a control is optional – just omit this along with the preceding comma for most toggle/button type controls. A parameter value of 0 will be assumed anyway.

SEQUENCES, COMBINATIONS, and MIXTURES

The Buttons page in the FSUIPC options is deliberately kept rather simple, hiding some of the programming possibilities. By editing the INI file you can do more:

· Hold one key down whilst pressing another

· Press and release a sequence of keys

· Mix key presses and FS controls in one button operation

· Make button actions conditional on the state of other buttons (see ‘Compound’ buttons, below)

The first three are simply done by defining the actions in separate entries, each referring to the same joystick/button number. I’d recommend you first use the Buttons page to get the initial action programmed (this making sure you have the right button number), then close FS and edit the entries already made in the INI file. The only important thing is to number the entries in sequence – preferably, but not necessarily, consecutively.

Examples:

16=H1,2,K69,8

17=H1,2,K49,8

Presses and holds the ‘E’ key then presses and holds the ‘1’ key, so both are pressed together. They are both released (in the same order) when the button is released.

18=P1,3,K69,8

19=P1,3,K49,8

20=P1,3,K50,8

21=P1,3,K51,8

22=P1,3,K52,8

Presses and releases ‘E’, then ‘1’, ‘2’, ‘3’, and ‘4’ in rapid succession, selecting all Engines.

23=P2,3,K76,24

24=P2,3,K65,8

25=P2,3,K69,8

Presses and releases ALT+L then A then E, is very rapid succession! FSUIPC leaves no delays at all between actions when the ALT key has been used. Otherwise, as soon as it allows the processing of the keys to begin, the ALT key combination will bring up the menu item and (in this case) dialogue, and FSUIPC will not be running and will therefore not be able to provide the key releases. Horrible mix-ups may then ensue! <G>

This last example is a real one I am actually using. The ALT+L gets the Lago menu, the ‘A’ selects FSAssist, and the ‘E’ selects the Pushback with Engine Start. This puts you in the pushback dialogue, but then you are into using the mouse, I’m afraid. FSUIPC can help no more.

COMPOUND BUTTON CONDITIONS

Facilities are included to allow you to specify actions for one button which are dependent on the state of another button (or more likely, switch). This by using what I call “Compound” button programming—though it could equally be “Conditional” or “Co-operative”. Anyhow, I use the letter C in the definitions, as follows:

n=CP(+j2,b2)j,b,
n=CU(+j2,b2)j,b, ...
n=CP(–j2,b2)j,b, ...
n=CU(–j2,b2)j,b, ...

Here the ‘C’ denotes compound button checking, whilst P = pulse on pressing, U = pulse on releasing, as before. There can be no Repeat or Hold action with compound actions.

Inside the parentheses are details of the secondary button, which must be in a certain condition for the current button to operate:

(+j2,b2) means that button b2 on joystick j2 must be pressed ("on") for the current button action (for j,b) to be obeyed.

(–j2,b2) means that button b2 on joystick j2 must be released ("off") for the current button action (for j,b) to be obeyed.

The j,b, ... part is the usual button parameter, for the action of the “current” button which is button b on joystick j.

You can have one condition, as shown above, or two, like this:

n=CP(+j2,b2)(+j3,b3)j,b,

where, now, both the parenthesised conditions must be met for the ‘j,b’ button action to result in the defined event.

The conditions can be made to apply not to the current state of a button, but to the state of a ‘flag’ that is set and cleared by a button (or even a keypress). For every possible button (16 joysticks x 32 buttons = 512 buttons) FSUIPC maintains a “Flag” (F). Each time any button is pressed (goes from off to on) FSUIPC toggles its flag. This makes the buttons flag a sort of “latching” switch. You can test it in any parenthesised condition by preceding the condition by F, thus:

N=CP(F+j2,b2) …

This says the rest of this parameter is obeyed if the Flag associated with j2,b2 is set. A condition (F–j2,b2) tests for the Flag being clear. Note that the actual current state of the button j2,b2 is not relevant. All that matters is whether it last left its Flag set or clear.

None, either or both conditions in a multiple-conditioned setting may be on Flags.

These Button Flags can also be set, cleared and toggled by three special FS controls, Button Flag Set (C1003), Button Flag Clear (C1004), and Button Flag Toggle (C1005). In all three cases the Joystick (0–15) and Button (0–31) referenced is given in the Parameter, by a value calculated as:

256 * J + B

(for example, Joystick 15, Button 31 would be 3871).

These three controls are listed in the FSUIPC options drop downs for assignment in both the Buttons and Keys pages, so you can program them there, or here in the INI file. With these themselves as controls resulting for conditional button actions, you can influence conditions for button actions in a whole multitude of ways.

One point to note: since you can use the keyboard or other compound button actions to set, clear or toggle the flags, the actual button for which the Flag is assigned does not actually need to exist!

Okay. Now what does this really mean? Some simpler examples will suffice here. I leave it to the more imaginative amongst you to come up with some really complex applications! <G>

First, it means that you can assign multiple uses to any number of buttons by making them conditional on a number of others. For example, a 12-position latching rotary switch could be wired to operate buttons 1 to 12 on joystick 1. Then for any other button I can program 12 different actions. For example, button 0,3 could have twelve different actions assigned, like this:

1=CP(+1,1)0,3, ...
2=CP(+1,2)0,3, ...
3=CP(+1,3)0,3, ...
...
12=CP(+1,12)0,3, ...

and so on. For example, you may have a set of assignments for ground operations, a set for take-off, a set for climb, a set for cruise, and so on.

Second, you can now program those two-phase type rotary switches, the ones where turning the spindle one way gives pulses on two lines phase shifted one way, and turning the spindle the other way gives the opposite phase relationship.

Say the inputs from the rotary are on Joystick 1, Buttons 1 and 2. When B1 is ON and B2 goes from off to on, then the spindle has turned one way. When B1 in ON and B2 goes from on to off, the spindle has turned the other. That is the simplest example:

1=CP(+1,1)1,2, ...
turn direction 1 action
2=CU(+1,1)1,2, ...
turn direction 2 action

You can also have double speed action, operating on every off to on and on to off change of B2. Just add two more conditions:

3=CP(–1,1)1,2, ...
turn direction 2 action (B2 goes off to on when B1 is off)
4=CU(–1,1)1,2, ...
turn direction 1 action (B2 goes on to off when B1 is off).

Since the whole thing is completely symmetric (there is no reason why B1 should control B2, it could also be the other way around), you can actually program it to act on ALL edges of both buttons, by adding another 4 conditions:

5=CP(+1,2)1,1, ...
turn direction 2 action (B1 goes off to on when B2 is on)
6=CU(+1,2)1,1, ...
turn direction 1 action (B1 goes on to off when B2 is on)
7=CP(–1,2)1,1, ...
turn direction 1 action (B1 goes off to on when B2 is off)
8=CU(–1,2)1,1, ...
turn direction 2 action (B1 goes on to off when B2 is off)

So, you can effectively choose how many pulses you will get for a given turning rate. As you can see, you can get rates of 1x, 2x or 4x—even 3x if you do one part for only half the changes! Note that for reliability at higher speeds you may need to reduce the PollInterval.
By the way, it is with some of these rotary switches where the double condition facility can come in very useful. If you have a single rotary of this type with also a push button action available, you can program it to adjust both the units and fractions of, say, a radio receiver. Just use the Flag associated with the button action to choose between one pair of actions or another, thus, supposing 1,3 to be the button:

1=CP(F+1,3)(+1,1)1,2, ...
increment fraction
2=CU(F+1,3)(+1,1)1,2, ...
decrement fraction

3=CP(F–1,3)(+1,1)1,2, ...
increment integer
4=CU(F–1,3)(+1,1)1,2, ...
decrement integer

One last thing. If you are using several rotaries of this type (that is, with the two signals in different phase relationships to indicate direction of turning), you can save button connections by making one of them (on each one) common. If you do this you can only turn one of them at a time, but this is probably a worthwhile restriction if you are getting short of button connections.

Keyboard Programming

FSUIPC’s options dialogue provides a page for programming keypresses to assign specific single FS controls. Here we look at how this programming is encoded in the FSUIPC.INI file, and how the programming can be extended to provide multiple controls for a single keystroke combination.

FORMAT OF KEY DEFINITIONS

The key programming is saved in a section in the INI file called [Keyss]. Up to 256 separate entries defining key actions can be included in this section, normally numbered sequentially from 0.

The format of each entry in the Keys section is as follows:

n=key,shifts,control,parameter

for a key press action only, or

n=key,shifts,control1,parameter1,control2,parameter2

for a key with press (1) and release (2) actions.

Here
n can run from 0 to 255 (i.e. maximum 256 different keystroke actions can be added),

key
virtual keycode, as in the FS CFG file (see list above, in the section about Buttons).

shifts
8
normal

+1
shift

+2
control

+4
alt (not really very useful)

+16
tab (an added "shift" to give more combinations)

control
FS control number (as in my lists), or special FSUIPC number for additional controls (these range from 1000 to 3000 at present: see list below).

parameter
value to go with control, for "SET" types and some special FSUIPC controls.

You can do all of this programming directly in the FSUIPC “Keys” page whilst in FS. In fact it is better to do it there, so you can test it out directly. Note that some of the listed FS controls either do not work, or do not do as you might suppose! And some seem to be mixed up—for instance the “Zoom Out” and “Zoom In” controls appear to be switched, even though the Fine variants of these are okay.

The only reason you may want to edit the details in the INI file is to make a single button press operate more than one control. You can specify such actions here, merely by adding the appropriate parameter lines. The controls will be sent in the order of the parameter entries (i.e. the ‘n’ in “n= …”). You can view all these, and delete them, in the Keys page on-line, but you cannot edit any other than the first such assignment for that key press.

Additional “FS” Controls added by FSUIPC

All the true FS controls are represented by numbers above 65536. They are listed in my FS-version specific documents called “FSxxxx Controls …”. FSUIPC has augmented these with its own set, programmable for both Button and Keys, and these utilise lower numbers, currently in that 1000–3000 range. These are:

1001
Roger Wilco PTT on

1002
Roger Wilco PTT off

1003
Set button flag (param = 256*joy + btn)

1004
Clear button flag (ditto)

1005
Toggle button flag (ditto)

1006 KeySend to WideClients (param = KeySend number, 1–255)

2010 PM MCP SPD push on B747

2011 PM MCP HDG sel on B747

2012 PM MCP ALT push on B747

2013 –

2014 –

2015 –

2016 –

2017 –

2018 –

2019 PM MCP A/T on

2020 PM MCP A/T off

2021 PM MCP THR mode button

2022 PM MCP SPD mode button

2023 PM MCP Mach/IAS sel

2024 PM MCP FLCH mode button

2025 PM MCP HDG mode button

2026 PM MCP VNAV mode button

2027 PM MCP LNAV mode button

2028 PM MCP LOC mode button

2029 PM MCP APP mode button

2030 PM MCP ALT mode button

2031 PM MCP VS mode button

2032 PM MCP AP1 (L) button

2033 PM MCP AP2 (C) button

2034 –

2035 –

2036 PM MCP AP3 (R) button

2037 PM MCP FD on

2038 PM MCP FD on

2039 –

2040 PM MCP AP Disc (not 747)

2041 PM MCP AP Eng (not 747)

2042 PM MCP AP Disc (747 only)

2043 –

2044 –

2045 –

2046 –

2047 –

2048 –

2049 PM AB LS button

2050 PM AB STD QNH rel (push)

2051 PM AB STD QNH set (pull)

2052 PM AB SPD button push

2053 PM AB SPD button pull

2054 PM AB HDG button push

2055 PM AB HDG button pull

2056 PM AB ALT button push

2057 PM AB ALT button pull

2058 PM AB VS button push

2059 PM AB VS button pull

2060 PM AB EXPED button

2061 PM AB TRKFPA button

2062 –

2063 –

2064 PM PFD Decision Ht Dec

2065 PM PFD Decision Ht Inc

2066 PM MCP Hdg Dec 1

2067 PM MCP Hdg Inc 1

2068 PM MCP Hdg Dec 10

2069 PM MCP Hdg Inc 10

2070 PM MCP Alt Dec 100

2071 PM MCP Alt Inc 100

2072 PM MCP Alt Dec 1000

2073 PM MCP Alt Inc 1000

2074 PM MCP Spd Dec 1/.01

2075 PM MCP Spd Inc 1/.01

2076 PM MCP Spd Dec 10/.10

2077 PM MCP Spd Inc 10/.10

2078 PM MCP V/S Dec 100

2079 PM MCP V/S Inc 100

2080 PM MCP Crs Dec 1

2081 PM MCP Crs Inc 1

2082 PM QNH Dec 0.01/1

2083 PM QNH Inc 0.01/1

2084 PM ND Range Dec

2085 PM ND Range Inc

2086 PM ND Mode Dec

2087 PM ND Mode Inc

2088 PM ND2 Range Dec

2089 PM ND2 Range Inc

2090 PM ND2 Mode Dec

2091 PM ND2 Mode Inc

2092 –

2093 –

2094 –

2095 –

2096 PM AB ND ILS Mode

2097 PM ND Map Arc Mode

2098 PM ND Map Ctr Mode

2099 PM ND Rose Mode

2100 PM ND Map Plan Mode

2101 PM ND Range 10

2102 PM ND Range 20

2103 PM ND Range 40

2104 PM ND Range 80

2105 PM ND Range 160

2106 PM ND Range 320

2107 PM ND Range 640

2108 PM ND VOR display

2109 PM ND NDB display

2110 PM ND WPT display

2111 PM ND ARPT display

2112 PM ND DATA display

2113 PM ND POS display

2114 PM AB ND VOR1 on

2115 PM AB ND ADF1 on

2116 PM AB ND VORADF1 off

2117 PM AB ND VOR2 on

2118 PM AB ND ADF2 on

2119 PM AB ND VORADF2 off

2120 PM AB ND Metric

2121 PM AB ND HDGVS/TRKFPA

2122 PM AB THR TOGA

2123 PM AB THR FLX/MCT

2124 PM AB THR CLB

2125 PM AB THR IDLE

2126 PM AB THR REV IDLE

2127 PM AB THR MAX REV

2128 PM AB ND2 ILS Mode

2129 PM ND2 Map Arc Mode

2130 PM ND2 Map Ctr Mode

2131 PM ND2 Rose Mode

2132 PM ND2 Map Plan Mode

2133 PM ND2 Range 10

2134 PM ND2 Range 20

2135 PM ND2 Range 40

2136 PM ND2 Range 80

2137 PM ND2 Range 160

2138 PM ND2 Range 320

2139 PM ND2 Range 640

2140 PM ND2 VOR display

2141 PM ND2 NDB display

2142 PM ND2 WPT display

2143 PM ND2 ARPT display

2144 PM ND2 DATA display

2145 PM ND2 POS display

2146 PM AB ND2 VOR1 on

2147 PM AB ND2 ADF1 on

2148 PM AB ND2 VORADF1 off

2149 PM AB ND2 VOR2 on

2150 PM AB ND2 ADF2 on

2151 PM AB ND2 VORADF2 off

2152 PM AB ND2 Metric

2153 PM AB ND2 HDGVS/TRKFPA

2154 –

2155 –

2156 –

2157 –

2158 –

2159 –

2160 PM EICAS Show Controls

2161 PM EICAS Standby Gauge

2162 PM EICAS Page Dec

2163 PM EICAS Page Inc

2164 PM EICAS Synoptic Dec

2165 PM EICAS Synoptic Inc

2166 PM AB ND ILS Mode

2167 PM ND Plan Wpt Dec

2168 PM ND Plan Wpt Inc

2999 Project Magenta GC Controls. Param specifies action, as follows (list from Project Magenta “Offsets” publication, with permission):

Add 100 for First Officer GC, else Captain side assumed.

1
Airbus: MAP, Boeing: MAP ARC
2
Airbus: NAV, Boeing: MAP CTR
3
Airbus: VOR, Boeing: VOR
4
Airbus: PLAN, Boeing: MAP PLAN
5
Airbus: LS Mode, Boeing: APP
8
Show Controls in EICAS/ECAM
9
Hide Controls in EICAS/ECAM
20
Inc Engine Page
21
Dec Engine Page
30
Engine Page 0
31
Engine Page 1
32
Engine Page 2
…
39
Engine Page 9 (if defined)
50
TCAS Off
51
TCAS Alt
52
TCAS Callsign
53
TCAS All
55
Show MCP Values in EICAS (Boeing) (Special PFC Display)
56
Hide MCP Values in EICAS (Boeing) (Special PFC Display)
60
Show Overview Page in ND
70
Show WXR
71
Hide WXR
72
Toggle WXR
80
Terrain Display On
81
Terrain Display Off
82
Toggle Terrain Display
83
Terrain Type Change
84
Terrain Colour/Mode Change
85
Terrain 3D
86
Terrain Size Change

Programs: facilities to load and run additional programs

FSUIPC can, as an extra, cause other programs to be run each time you load and run Flight simulator. Details of what programs to be run are provided in an additional section in the FSUIPC.INI file. This section cannot be edited in the on-line FSUIPC options dialogues. You need to either edit the details directly in the INI file, or use the excellent utility program “Run Options” provided separately by José Oliveira (you need the version of Run Options dated November 2002 to use the new ‘CLOSE’ option).

The additional section is

[Programs]

and can contain up to 16 requests to run other programs—up to 8 “Run” parameters Run1 to Run8, and up to 8 “RunIf” parameters, RunIf1 to RunIf8. Both sets are otherwise identical in format. The only difference is that the RunIf programs are not run if they appear to be already running. The ordinary “Run” programs will be loaded without such checking.

The format is simply:

RunN=(Options,)<full pathname of program to be run>

or
RunIfN=(Options,)<full pathname of program to be run>

where N runs from 1 to 8. Details of options are given below, but if none are required the parameter simplifies into just the full pathname.

For example:
Run1=D:\RadarContact\RCV3.exe

might be used to run Radar Contact version 3.

If the program needs command-line parameters these can be included by enclosing the whole value in quotes, so that the space(s) needed don't cause problems. You may also need to include the quotes if the pathname includes spaces.

For example:

Run2="c:\epic\loadepic fs98jet"

The programs are loaded in order of the run number, 1–8. If a mixture of Run and RunIf parameters are given, the order is Run1, RunIf1, Run2, RunIf2, and so on.

The Options you can use are as follows:

HIDE
tries to get the program to hide itself when it runs. This is only possible if the program defines its window to use default settings, so it isn’t very useful for many programs, unfortunately.

HIGH
runs the program at higher priority than FS. Use with care! Messing about with priorities doesn’t work well in all circumstances, and in particular FS2002 doesn’t seem to like it much.

CLOSE
closes the program tidily (if possible) when FS is terminated.

KILL
forcibly terminates the program, if possible, when FS is terminated.

LOW
runs the program at IDLE priority. Depending on what the program does, this may actually effectively stop it until you direct user focus to it, as FS tends to soak up all Idle time.

READY
delays loading and running the program until FS is up and ready to fly, and FSUIPC can supply valid data through its IPC interface. (This parameter may, of course, result in the programs being run in a different order to that specified by the Run number).

Of these really only CLOSE, KILL and READY are of general use. If you want to apply more than one option, list them separated by commas, but no spaces. For example:

RunIf1=READY,KILL,D:\FS2002\WeatherSet.exe

Assignment of FLAPS_SET control (for FS2002)

The Flaps calibration facility in FSUIPC cannot be used directly in FS2002, because the convenient FLAPS_SET control can no longer be assigned to an Axis in FS2002.CFG. To get around this, you can select any one of the following FS2002 Axis controls (obviously one you are not otherwise using!), assign it (by name) to your Axis in FS2002.CFG, tell FSUIPC to use this by declaring its numeric value, as about to be explained, then calibrating it in FSUIPC’s Joystick section (as the FLAPS control, on page 6).

The AXIS controls at your disposal are listed below. Use the chosen name in FS2002.CFG and the relevant number in a new parameter in the [JoystickCalibration] section of FSUIPC.INI, thus:

FlapsSetControl=<control number>

This is set to 0 to disable the Flaps Set interception.

Valid Axis Controls (N.B. Not all tested. Please advise if you find any which don’t work in FS2002):

AXIS_AILERONS_SET
65763

AXIS_ELEV_TRIM_SET
65766

AXIS_ELEVATOR_SET
65762

AXIS_LEFT_BRAKE_SET
66387

AXIS_MIXTURE_SET
66292

AXIS_MIXTURE1_SET
66422

AXIS_MIXTURE2_SET
66425

AXIS_MIXTURE3_SET
66428

AXIS_MIXTURE4_SET
66431

AXIS_PAN_HEADING
66504

AXIS_PAN_PITCH
66503

AXIS_PAN_TILT
66505

AXIS_PROPELLER_SET
66291

AXIS_PROPELLER1_SET
66421

AXIS_PROPELLER2_SET
66424

AXIS_PROPELLER3_SET
66427

AXIS_PROPELLER4_SET
66430

AXIS_RIGHT_BRAKE_SET
66388

AXIS_RUDDER_SET
65764

AXIS_SLEW_AHEAD_SET
65867

AXIS_SLEW_ALT_SET
65870

AXIS_SLEW_BANK_SET
65871

AXIS_SLEW_HEADING_SET
65869

AXIS_SLEW_PITCH_SET
65872

AXIS_SLEW_SIDEWAYS_SET
65868

AXIS_SPOILER_SET
66382

AXIS_THROTTLE_SET
65765

AXIS_THROTTLE1_SET
66420

AXIS_THROTTLE2_SET
66423

AXIS_THROTTLE3_SET
66426

AXIS_THROTTLE4_SET
66429
Assignment of additional controls (Reverser, Aileron and Rudder Trims)

There are no axis controls provided in FS for jet thrust reversing nor for aileron or rudder trim. To get around this, you can select any one of the above FS Axis controls (normally one you are not otherwise using!), then assign it (by name) to your Axis in FS2002.CFG, tell FSUIPC to use this by declaring its numeric value, as about to be explained, then calibrating it in FSUIPC’s Joystick section (on page 7).

The AXIS controls at your disposal are listed above. Use the chosen name in FS2002.CFG and the relevant number in a new parameter in the [JoystickCalibration] section of FSUIPC.INI, thus:

ReverserControl=<control number>

AileronTrimControl=<control number>

RudderTrimControl=<control number>

These are set to 0 to disable the interception altogether. FSUIPC assigns the AXIS_MIXTURE_SET control (number 66292) to the Reverser by default. There is one other parameter for the reverser:

MaxThrottleForReverser=0

This controls the interlock—the reverser will not engage until all throttles are reduced to this setting (normally 0, or idle). You can try a non-zero value here if you cannot calibrate your throttles to produce a stable idle zero.

Multiple Joysticks

On FS2000/2002, using the Joystick sections of the FSUIPC dialogue to calibrate the main flight controls, FSUIPC can also accept up to four different control inputs for each main flight control, treating them equally. You can have up to 4 aileron, elevator, rudder, throttle, left and right brake controls. FSUIPC takes the value from the input giving maximum deflection from ‘neutral’ or ‘idle’. There’s no averaging, or other types of conflict resolution, taking place.

You have to somehow connect up your multiple joystick axes, whether by using an EPIC card, multiple Game Ports, or multiple USB devices. FSUIPC cannot help there. Having done that, you need to find ‘spare’ FS controls which you will not otherwise be using from joystick inputs (see the lists in my FS2000 Controls documents)—it doesn’t matter if you will be using those controls from the keyboard. FSUIPC only pinches the joystick inputs. You have to assign the additional joystick axes, wherever they may be, to these “spare” controls. Again you should find enough explanation for this in my FS2000 Controls document.

Now add to the FSUIPC.INI file’s JoystickCalibration section (add the section if necessary) a list of declarations which define the additional controls you have assigned. You define these by number.

For example, suppose I have a second joystick and rudder set up for a CoPilot on JOYSTICK_01. The section in FS2000.CFG might look like this (FS2002 sections are similar but not the same):

[JOYSTICK_01]

LOCKED=1

TYPE=0

AXIS_FLAGS=7

AXIS_EVENT_00=EGT

AXIS_SCALE_00=64

AXIS_NULL_00=0

AXIS_EVENT_01=EGT_DEC

AXIS_SCALE_01=64

AXIS_NULL_01=0

AXIS_EVENT_02=EGT_INC

AXIS_SCALE_02=64

AXIS_NULL_02=0

Here I’ve decided that these three EGT controls aren’t going to be useful on any joystick or button inputs, so I’ve ‘pinched’ then for my copilot controls. From my FS2000 controls document you find that these are numbered 65558, 66033 and 66032 respectively. The parameters now to be added to the FSUIPC file are:

[JoystickCalibration]

AileronB=65558

ElevatorB=66033

RudderB=66032

Other parameters here can define LeftBrakeB, RightBrakeB, ThrottleB, and also C and D versions of all 6 controls, so providing up to 4 copies of each one.

Note that you will need to calibrate all controls so that the ones controlling the same values are as close as possible in range and response. Do this first in Windows Control Panel, then, after making the above adjustments and assignments, in FSUIPC. Calibrate dead zones at the ends (and in the centre for aileron, elevator and rudder) to “cover up” any discrepancies—in other words, calibrate for the worst of each.

Facility for multiple INI installations (FS2000 and FS2002)

Different FSUIPC.ini files can be used for differing FS2000/2002 requirements, even loading from the same FS2000/2002 installation. This involves using multiple FS2000.CFG or FS2002.CFG files with different filenames, with the following section added in each one:

[FSUIPC]

ControlName=<name>

Then you load FS2000 for each configuration with the command line parameter specifying the CFG file, thus:

FS2000.exe /CFG:<filename>.CFG or

FS2002.exe /CFG:<filename>.CFG

And this will allow FSUIPC to identify its correct .INI file, <name>.ini

Note that the Log files, when logging is enabled, will also use this <name>, not just FSUIPC.log etc.

The main use of this feature is so that a PC can be used in two or more modes with one FS installation, for example:

· As a WidevieW “slave” with the appropriate default Flight loaded by FS (to place it into slew mode with the correct view) and the correct FSUIPC options set for allowing WidevieW to copy the weather correctly, and:

· With different FS cfg and FSUIPC ini files to run FS in normal ‘local control’ mode with all normal options.

More about FS2000/2002 ‘Real Weather’

FSUIPC needs to detect when downloaded real weather is being used, and needs to identify exactly what that weather is. There are three reasons it needs this data:

1. So that correct weather details can be supplied in the FS98-compatible areas and in the Advanced Weather Interface, for external programs and some third party gauges.

2. So that correct weather details can be provided to Adventures.

3. So that it can correctly detect whether the aircraft is inside or outside a cloud layer and apply the ‘stuck white-out’ fix mentioned elsewhere.

Unfortunately finding the correct local weather has been the biggest single problem in FSUIPC’s rather short development history to date. Determining whether local or global weather is in effect was easy enough, and recent investigations have revealed the ICAO table listing METAR reporting station ICAO codes along with their geographical location and elevation. However, the problem has been in identifying reliably exactly which of these reporting stations is the one actually currently being used.

Before version 1.56 I thought I’d cracked it. There was one variable in the Weather module that seemed to always provide an index into a table of ‘weather pointers’ which revealed the correct current weather structures. Most of the testing seemed to confirm this. But, alas, it wasn’t tested enough, and some inconsistent reports from Adventures giving bad ATIS reports showed that this index only pointed to one of three possible reporting stations.

That was the situation until version 2.11. Thanks to a little outside help, since version 2.11 FSUIPC can actually determine fairly accurately and, I think, reliably, all the current local weather details and make them available for applications to read correctly. It turns out that the actual local weather is an interpolation between the two or three nearest weather reporting stations, so the values you see will be continuously changing.

Published by Peter L. Dowson, 14th March 2003. Support forum: forums.simflight.com/dowson

